C++ 算法 lower_bound()函数
C++算法 lower_bound() 函数是二分搜索的版本。该函数用于返回一个指向有序范围[first, last)中第一个不小于(即大于或等于)指定值 val 的迭代器。
第一个版本使用运算符 < 来比较元素,第二个版本使用 comp 函数。
语法
default (1) template <class ForwardIterator, class T>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
const T& val);
custom (2) template <class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
const T& val, Compare comp);
参数
first :一个前向迭代器,指向要搜索的范围的第一个元素。
last :一个前向迭代器,指向要搜索的范围的最后一个元素之后的位置。
comp :一个用户定义的二元谓词函数,接受两个参数并返回true(如果两个参数有序)或false。它遵循严格弱排序来对元素排序。
val :要比较范围中的元素的下界值。
返回值
如果找不到该元素,它返回一个指向范围中第一个不小于val的元素的迭代器,如果没有这样的元素,则返回last。
复杂性
平均情况下,复杂度在first和last之间的距离的对数级别:执行最多log2(N) + 1次元素比较,其中N = last – first。
数据竞争
[first, last)范围内的对象被访问。
异常
如果元素比较或迭代器操作引发异常,此函数会抛出异常。
注意:无效参数会导致未定义行为。
示例1
让我们看一个简单的示例来演示lower_bound()的使用:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
vector<int> v = {3, 1, 4, 6, 5};
decltype(v)::iterator it = lower_bound(v.begin(), v.end(), 4);
cout << *it << ", pos = " << (it - v.begin()) << endl;
return 0;
}
输出:
4, pos = 2
示例2
让我们来看另一个简单的示例:
#include <iostream> // std::cout
#include <algorithm> // std::lower_bound, std::upper_bound, std::sort
#include <vector> // std::vector
using namespace std;
int main () {
int myints[] = {10,20,30,30,20,10,10,20};
vector<int> v(myints,myints+8); // 10 20 30 30 20 10 10 20
sort (v.begin(), v.end()); // 10 10 10 20 20 20 30 30
vector<int>::iterator low,up;
low=lower_bound (v.begin(), v.end(), 20); // ^
up= upper_bound (v.begin(), v.end(), 20); // ^
cout << "lower_bound at position " << (low- v.begin()) << '\n';
cout << "upper_bound at position " << (up - v.begin()) << '\n';
return 0;
}
输出:
lower_bound at position 3
upper_bound at position 6
示例3
让我们看一个另外的简单示例:
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
using namespace std;
template<class ForwardIt, class T, class Compare=less<>>
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, Compare comp={})
{
// Note: BOTH type T and the type after ForwardIt is dereferenced
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
// This is stricter than lower_bound requirement (see above)
first = lower_bound(first, last, value, comp);
return first != last && !comp(value, *first) ? first: last;
}
int main()
{
vector<int> data = { 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6 };
auto lower = lower_bound(data.begin(), data.end(), 4);
auto upper = upper_bound(data.begin(), data.end(), 4);
copy(lower, upper, ostream_iterator<int>(cout, " "));
cout << '\n';
// classic binary search, returning a value only if it is present
data = { 1, 2, 4, 6, 9, 10 };
auto it = binary_find(data.cbegin(), data.cend(), 4); //< choosing '5' will return end()
if(it != data.cend())
cout << *it << " found at index "<< distance(data.cbegin(), it);
return 0;
}
输出:
4 4 4
4 found at index 2
示例4
让我们再看一个简单的示例:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool ignore_case(char a, char b) {
return(tolower(a) == tolower(b));
}
int main(void) {
vector<char> v = {'A', 'b', 'C', 'd', 'E'};
auto it = lower_bound(v.begin(), v.end(), 'C');
cout << "First element which is greater than \'C\' is " << *it << endl;
it = lower_bound(v.begin(), v.end(), 'C', ignore_case);
cout << "First element which is greater than \'C\' is " << *it << endl;
it = lower_bound(v.begin(), v.end(), 'z', ignore_case);
cout << "All elements are less than \'z\'." << endl;
return 0;
}
输出:
First element which is greater than 'C' is b
First element which is greater than 'C' is d
All elements are less than 'z'.