在Python中生成拉盖尔多项式和x、y复数点的伪范德蒙德矩阵
要生成拉盖尔多项式的伪范德蒙德矩阵,请使用Python Numpy中的laguerre.lagvander2d()方法。该方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是对应拉盖尔多项式的次数。dtype将与转换后的x相同。
参数x,y返回一个点的数组。dtype将根据元素是否为复数转换为float64或complex128。如果x是标量,则会将其转换为1-D数组。参数deg是形式为[x_deg, y_deg]的最大次数的列表。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import laguerre as L
使用numpy.array()方法创建具有相同形状的点坐标数组-
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型 –
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状−
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
使用Python的Numpy库中的laguerre.lagvander2d()函数可以生成Laguerre多项式的伪Vandermonde矩阵−
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import laguerre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the array
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the array
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander2d() in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[-2.+2.j -1.+2.j]
Array2...
[1.+2.j 2.+2.j]
Array1 datatype...
complex128
Array2 datatype...
complex128
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. +0.j 0. -2.j
-2.5 -2.j -4.66666667 +0.33333333j
3. -2.j -4. -6.j
-11.5 -1.j -13.33333333 +10.33333333j
5. -8.j -16. -10.j
-28.5 +10.j -20.66666667 +39.j ]
[ 1. +0.j -1. -2.j
-3. +0.j -2.33333333 +3.33333333j
2. -2.j -6. -2.j
-6. +6.j 2. +11.33333333j
1.5 -6.j -13.5 +3.j
-4.5 +18.j 16.5 +19.j ]]