在Python中用浮点数组点生成埃尔米特多项式的Vandermonde矩阵
要生成埃尔米特多项式的Vandermonde矩阵,可以使用Python Numpy中的chebyshev.hermvander()方法。该方法返回伪Vandermonde矩阵。返回的矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是对应埃尔米特多项式的度数。dtype将与转换后的x相同。
参数x返回一个点的数组。dtype根据元素是否为复数进行转换为float64或complex128。如果x是标量,则转换为1-D数组。参数deg是结果矩阵的度数。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite as H
创建一个数组 –
x = np.array([0, 3.5, -1.4, 2.5])
展示数组 –
print("Our Array...\n",x)
检查尺寸 –
print("\nDimensions of our Array...\n",x.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",x.dtype)
获取形状 –
print("\nShape of our Array object...\n",x.shape)
要生成Hermite多项式的Vandermonde矩阵,请使用chebyshev.hermvander()函数
print("\nResult...\n",H.hermvander(x, 2))
示例
import numpy as np
from numpy.polynomial import hermite as H
# Create an array
x = np.array([0, 3.5, -1.4, 2.5])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() in Python Numpy
print("\nResult...\n",H.hermvander(x, 2))
输出
Our Array...
[ 0. 3.5 -1.4 2.5]
Dimensions of our Array...
1
Datatype of our Array object...
float64
Shape of our Array object...
(4,)
Result...
[[ 1. 0. -2. ]
[ 1. 7. 47. ]
[ 1. -2.8 5.84]
[ 1. 5. 23. ]]