在Python中使用复数数组生成Hermite多项式的Vandermonde矩阵
要生成Hermite多项式的Vandermonde矩阵,可以使用Python Numpy中的chebyshev.hermvander()方法。该方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是对应Hermite多项式的次数。dtype将与转换后的x相同。
参数x返回一个点数组。根据其中是否有复数元素,将其dtype转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是所得矩阵的次数。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite as H
创建一个数组 –
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
显示数组 –
print("Our Array...\n",x)
检查尺寸−
print("\nDimensions of our Array...\n",x.ndim)
获取数据类型−
print("\nDatatype of our Array object...\n",x.dtype)
获取形状 –
print("\nShape of our Array object...\n",x.shape)
要生成一个Hermite多项式的Vandermonde矩阵,可以使用chebyshev.hermvander()函数。
print("\nResult...\n",H.hermvander(x, 2))
示例
import numpy as np
from numpy.polynomial import hermite as H
# Create an array
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() in Python Numpy
print("\nResult...\n",H.hermvander(x, 2))
输出
Our Array...
[-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j]
Dimensions of our Array...
1
Datatype of our Array object...
complex128
Shape of our Array object...
(5,)
Result...
[[ 1. +0.j -4. +4.j -2.-32.j]
[ 1. +0.j -2. +4.j -14.-16.j]
[ 1. +0.j 0. +4.j -18. +0.j]
[ 1. +0.j 2. +4.j -14.+16.j]
[ 1. +0.j 4. +4.j -2.+32.j]]