在Python中生成Hermite多项式的伪范德蒙矩阵
要生成Hermite多项式的伪范德蒙德矩阵,请使用Python Numpy中的hermite.hermvander2d()方法。该方法返回伪范德蒙德矩阵。
参数x,y是点坐标的数组,所有的形状相同。根据元素是否为复数,将dtype转换为float64或complex128。标量转换为1-D数组。参数deg是形式为[x_deg,y_deg]的最大度的列表。
步骤
首先,导入所需的库 –
import numpy as np
from numpy.polynomial import hermite as H
使用numpy.array()方法创建具有相同形状的点坐标数组
x = np.array([1, 2])
y = np.array([3, 4])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型 –
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的尺寸-
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状−
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
要生成Hermite多项式的伪Vandermonde矩阵,请使用Python Numpy中的hermite.hermvander2d()函数。
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import hermite as H
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite.hermvander2d() in Python Numpy
# The method returns the pseudo-Vandermonde matrix.
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[1 2]
Array2...
[3 4]
Array1 datatype...
int64
Array2 datatype...
int64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[1.000e+00 6.000e+00 3.400e+01 1.800e+02 2.000e+00 1.200e+01 6.800e+01
3.600e+02 2.000e+00 1.200e+01 6.800e+01 3.600e+02]
[1.000e+00 8.000e+00 6.200e+01 4.640e+02 4.000e+00 3.200e+01 2.480e+02
1.856e+03 1.400e+01 1.120e+02 8.680e+02 6.496e+03]]