在Python中对笛卡尔积x,y和z上的3维Chebyshev级数进行评估
要在笛卡尔积x,y和z上评估3维Chebyshev级数,请在Python中使用polynomial.chebgrid3d(x, y, z)方法。如果c的维度少于三维,则会隐式地将其形状追加为3维。结果的形状将为c.shape[3:] + x.shape + y.shape + z.shape。
参数x,y和z是在笛卡尔积x,y和z的点处评估的三维级数。如果x,y或z是列表或元组,则首先将其转换为ndarray,否则将保持不变,并且如果它不是ndarray,则将其视为标量。
参数c是一个按顺序排列的系数数组,使得i,j次项的系数包含在c[i,j]中。如果c的维数大于两个,则剩余的索引枚举多个系数集。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import chebyshev as C
创建一个系数的3D数组−
c = np.arange(16).reshape(2,2,4)
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 −
print("\nDatatype of our Array object...\n",c.dtype)
掌握形状−
print("\nShape of our Array object...\n",c.shape)
要在x、y、z的笛卡尔积上评估一个三维切比雪夫级数,请使用polynomial.chebgrid3d(x, y, z)方法-
print("\nResult...\n",C.chebgrid3d([1,2],[1,2],[1,2], c))
示例
import numpy as np
from numpy.polynomial import chebyshev as C
# Create a 3D array of coefficients
c = np.arange(16).reshape(2,2,4)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Chebyshev series on the Cartesian product of x, y, z, use the polynomial.chebgrid3d(x, y, z) method in Python
print("\nResult...\n",C.chebgrid3d([1,2],[1,2],[1,2], c))
输出
Our Array...
[[[ 0 1 2 3]
[ 4 5 6 7]]
[[ 8 9 10 11]
[12 13 14 15]]]
Dimensions of our Array...
3
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 4)
Result...
[[[ 120. 1240.]
[ 196. 2004.]]
[[ 212. 2148.]
[ 342. 3438.]]]