在Python中对具有3D系数数组的x和y的笛卡尔积上评估2D Hermite_e系列
要在x和y的笛卡尔积上评估2D Hermite_e系列,使用Python中的hermite.hermegrid2d(x, y, c)方法。该方法返回笛卡尔积中点的二维多项式的值。
参数是x和y。二维系列在x和y的笛卡尔积的点上进行评估。如果x或y是一个列表或元组,则首先将其转换为ndarray,否则保持不变,并且如果它不是一个ndarray,则将其视为标量。
参数c是一个系数数组,顺序排列,使得i,j次项的系数包含在c[i,j]中。如果c的维度大于两个,剩余的索引将枚举多个系数集。如果c的维度少于两个,将隐式在其形状中附加1,使其成为2D。结果的形状将为c.shape[2:] + x.shape。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import hermite_e as H
创建一个3D系数数组 −
c = np.arange(24).reshape(2,2,6)
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",c.dtype)
获取图形 –
print("\nShape of our Array object...\n",c.shape)
为了评估笛卡尔乘积x和y上的二维Hermite_e级数,请使用Python中的hermite.hermegrid2d(x, y, c)方法。该方法返回笛卡尔乘积x和y上点的二维多项式的值-
print("\nResult...\n",H.hermegrid2d([1,2],[1,2], c))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create a 3d array of coefficients
c = np.arange(24).reshape(2,2,6)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 2-D Hermite_e series on the Cartesian product of x and y, use the hermite.hermegrid2d(x, y, c) method in Python
print("\nResult...\n",H.hermegrid2d([1,2],[1,2], c))
输出
Our Array...
[[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]]
[[12 13 14 15 16 17]
[18 19 20 21 22 23]]]
Dimensions of our Array...
3
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 6)
Result...
[[[ 36. 60.]
[ 66. 108.]]
[[ 40. 66.]
[ 72. 117.]]
[[ 44. 72.]
[ 78. 126.]]
[[ 48. 78.]
[ 84. 135.]]
[[ 52. 84.]
[ 90. 144.]]
[[ 56. 90.]
[ 96. 153.]]]