Python 求解以x和y的笛卡尔积为变量的二维Hermite_e级数
要求解以x和y的笛卡尔积为变量的二维Hermite_e级数,可以使用Python中的hermite_e.hermegrid2d(x, y, c)方法。该方法返回x和y的笛卡尔积中点上的二维多项式值。
x和y是参数。在x和y的笛卡尔积中的点上求解二维级数。如果x或y是列表或元组,则首先将其转换为ndarray,否则保持不变,并且如果它不是ndarray,则将其视为标量。
参数c是一个按照i,j次项的系数顺序排列的数组,i,j次项的系数包含在c[i,j]中。如果c的维数大于两个,则剩余的索引枚举多个系数集。如果c的维数少于两个,则会隐式附加1到其形状以使其成为2-D。结果的形状将为c.shape[2:] + x.shape。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite_e as H
创建一个一维系数数组 −
c = np.array([3, 5])
显示数组 —
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 −
print("\nShape of our Array object...\n",c.shape)
在Cartesian乘积x和y上评估2-D Hermite_e级数,使用hermite_e.hermegrid2d(x, y, c)方法。这个方法返回在Cartesian乘积x和y的点上的二维多项式的值-
print("\nResult...\n",H.hermegrid2d([1,2],[1,2], c))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create a 1d array of coefficients
c = np.array([3, 5])
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 2-D Hermite_e series on the Cartesian product of x and y, use the hermite_e.hermegrid2d(x, y, c) method in Python
print("\nResult...\n",H.hermegrid2d([1,2],[1,2], c))
输出
Our Array...
[3 5]
Dimensions of our Array...
1
Datatype of our Array object...
int64
Shape of our Array object...
(2,)
Result...
[21. 34.]