Python 计算笛卡尔积x、y和z上的3-D Hermite_e级数
要在笛卡尔积x、y和z上计算3-D Hermite_e级数,可以使用Python中的hermite.hermegrid3d(x, y, z, c)方法。该方法返回笛卡尔积x、y和z中点处的三维多项式的值。
参数为x、y和z。三维级数在笛卡尔积x、y和z中的点处进行评估。如果x、y或z是一个列表或元组,它首先被转换为ndarray,否则保持不变,并且如果它不是ndarray,它将被视为一个标量。
参数c是按顺序排列的系数数组,其中i,j次的系数包含在c[i,j]中。如果c的维度大于两个,其余的索引列举多组系数。如果c的维度少于三个,则隐式地将1附加到其形状,使其成为3-D。结果的形状将是c.shape[3:] + x.shape + y.shape + z.shape。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import hermite_e as H
创建一个系数的3D数组 –
c = np.arange(16).reshape(2,2,4)
显示数组 -
print("Our Array...\n",c)
检查尺寸 −
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型-
print("\nDatatype of our Array object...\n",c.dtype)
得到形状 −
print("\nShape of our Array object...\n",c.shape)
要在x、y和z的笛卡尔乘积上评估一个三维Hermite_e级数,可以在Python中使用hermite.hermegrid3d(x, y, z, c)方法。
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create a 3D array of coefficients
c = np.arange(16).reshape(2,2,4)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Hermite_e series on the Cartesian product of x, y and z, use the hermite.hermegrid3d(x, y, z, c) method in Python
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
输出
Our Array...
[[[ 0 1 2 3]
[ 4 5 6 7]]
[[ 8 9 10 11]
[12 13 14 15]]]
Dimensions of our Array...
3
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 4)
Result...
[[[-20. 248.]
[-30. 404.]]
[[-30. 436.]
[-45. 702.]]]