Python 在x,y和z的笛卡尔积上评估3-D Hermite_e系列
要在x,y和z的笛卡尔积上评估3-D Hermite_e系列,使用Python中的hermite_e.hermegrid3d(x, y, z, c)方法。该方法返回在x,y和z的笛卡尔积中的点处的二维多项式的值。
参数是x,y,z。三维系列在x,y和z的笛卡尔积中的点上进行评估。如果x,y或z是列表或元组,它会首先转换为ndarray,否则保持不变,如果它不是ndarray,则将其视为标量。
参数c是一个按序排列的系数数组,其中i,j次的系数包含在c[i,j]中。如果c的维数大于两个,则其余的索引枚举多个系数集。如果c的维数小于三维,则会隐式地在其形状中添加1以使其成为3-D。结果的形状将为c.shape[3:] + x.shape + y.shape + z.shape。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite_e as H
创建一个四维系数数组 −
c = np.arange(48).reshape(2,2,6,2)
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 −
print("\nShape of our Array object...\n",c.shape)
使用Python中的hermite_e.hermegrid3d(x, y, z, c)方法,在x、y和z的笛卡尔乘积上评估一个三维Hermite_e级数-
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create a 4d array of coefficients
c = np.arange(48).reshape(2,2,6,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Hermite_e series on the Cartesian product of x, y and z, use the hermite_e.hermegrid3d(x, y, z, c) method in Python
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
输出
Our Array...
[[[[ 0 1]
[ 2 3]
[ 4 5]
[ 6 7]
[ 8 9]
[10 11]]
[[12 13]
[14 15]
[16 17]
[18 19]
[20 21]
[22 23]]]
[[[24 25]
[26 27]
[28 29]
[30 31]
[32 33]
[34 35]]
[[36 37]
[38 39]
[40 41]
[42 43]
[44 45]
[46 47]]]]
Dimensions of our Array...
4
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 6, 2)
Result...
[[[[ 424. -1848.]
[ 684. -2952.]]
[[ 732. -3132.]
[ 1170. -4968.]]]
[[[ 440. -1908.]
[ 708. -3042.]]
[[ 756. -3222.]
[ 1206. -5103.]]]]