使用Python生成具有复数点坐标的Hermite多项式的伪Vandermonde矩阵
要生成Hermite多项式的伪Vandermonde矩阵,请使用Python Numpy中的hermite.hermvander2d()方法。该方法返回伪Vandermonde矩阵。参数x、y是具有相同形状的点坐标数组。根据元素是否为复数,数据类型将转换为float64或complex128。标量将转换为1-D数组。参数deg是形式为[x_deg, y_deg]的最大度的列表。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import hermite as H
使用numpy.array()方法创建具有相同形状的点坐标数组-
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型−
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 –
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
使用Python Numpy中的hermite.hermvander2d()函数生成Hermite多项式的伪Vandermonde矩阵。该方法返回伪Vandermonde矩阵:
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import hermite as H
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the array
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the array
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite.hermvander2d() in Python Numpy
# The method returns the pseudo-Vandermonde matrix.
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[-2.+2.j -1.+2.j]
Array2...
[1.+2.j 2.+2.j]
Array1 datatype...
complex128
Array2 datatype...
complex128
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1.000e+00 +0.j 2.000e+00 +4.j -1.400e+01 +16.j -1.000e+02 -40.j
-4.000e+00 +4.j -2.400e+01 -8.j -8.000e+00 -120.j 5.600e+02 -240.j
-2.000e+00 -32.j 1.240e+02 -72.j 5.400e+02 +416.j -1.080e+03 +3280.j]
[ 1.000e+00 +0.j 4.000e+00 +4.j -2.000e+00 +32.j -1.520e+02 +104.j
-2.000e+00 +4.j -2.400e+01 +8.j -1.240e+02 -72.j -1.120e+02 -816.j
-1.400e+01 -16.j 8.000e+00 -120.j 5.400e+02 -416.j 3.792e+03 +976.j]]