在Python中生成拉盖尔多项式和x、y浮点数数组的伪Vandermonde矩阵
要生成拉盖尔多项式的伪Vandermonde矩阵,使用Python的Numpy库中的laguerre.lagvander2d()方法。该方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是对应的拉盖尔多项式的次数。dtype将与转换后的x相同。
参数x、y返回一个点的数组。dtype根据元素是否复数而转换为float64或complex128。如果x是标量,则将其转换为1-D数组。参数deg是形如[x_deg, y_deg]的最大度的列表。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import laguerre as L
使用numpy.array()方法创建具有相同形状的点坐标数组 –
x = np.array([0.1, 1.4])
y = np.array([1.7, 2.8])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型 –
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 –
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
使用Python的Numpy中的laguerre.lagvander2d()函数生成Laguerre多项式的伪Vandermonde矩阵−
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import laguerre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([0.1, 1.4])
y = np.array([1.7, 2.8])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander2d() in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[0.1 1.4]
Array2...
[1.7 2.8]
Array1 datatype...
float64
Array2 datatype...
float64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. -0.7 -0.955 -0.58383333 0.9 -0.63
-0.8595 -0.52545 0.805 -0.5635 -0.768775 -0.46998583]
[ 1. -1.8 -0.68 0.70133333 -0.4 0.72
0.272 -0.28053333 -0.82 1.476 0.5576 -0.57509333]]