在Python中生成Laguerre多项式的Vandermonde矩阵
要生成Laguerre多项式的伪Vandermonde矩阵,请使用Python NumPy中的laguerre.lagvander()方法。该方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Laguerre多项式的次数。dtype将与转换后的x相同。
参数x返回一组点的数组。如果任何元素是复数,则将dtype转换为float64或complex128。如果x是标量,则将其转换为1-D数组。参数deg是生成的矩阵的次数。
步骤
首先,导入所需的库 –
import numpy as np
from numpy.polynomial import laguerre as L
创建一个数组−
x = np.array([0, 1, -1, 2])
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型−
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 –
print("\nShape of our Array object...\n",c.shape)
使用Python中的laguerre.lagvander()函数来生成拉盖尔多项式的伪Vandermonde矩阵 –
print("\nResult...\n",L.lagvander(x, 2))
示例
import numpy as np
from numpy.polynomial import laguerre as L
# Create an array
x = np.array([0, 1, -1, 2])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander() in Python Numpy
print("\nResult...\n",L.lagvander(x, 2))
输出
Our Array...
[ 0 1 -1 2]
Dimensions of our Array...
1
Datatype of our Array object...
int64
Shape of our Array object...
(4,)
Result...
[[ 1. 1. 1. ]
[ 1. 0. -0.5]
[ 1. 2. 3.5]
[ 1. -1. -1. ]]