在Python中生成Hermite_e多项式的伪Vandermonde矩阵
要生成Hermite_e多项式的伪Vandermonde矩阵,请使用Python Numpy中的hermite_e.hermevander2d()方法。该方法返回伪Vandermonde矩阵。参数x、y是坐标点的数组,形状相同。根据元素是否为复数,数据类型将转换为float64或complex128。标量将转换为1-D数组。参数deg是最大度数的列表,形式为[x_deg, y_deg]。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite as H
使用numpy.array()方法创建具有相同形状的点坐标数组-
x = np.array([1, 2])
y = np.array([3, 4])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型 –
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 –
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
要生成Hermite_e多项式的伪Vandermonde矩阵,在Python Numpy中使用hermite_e.hermevander2d()函数−
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the array
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the array
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermevander2d() in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[1 2]
Array2...
[3 4]
Array1 datatype...
int64
Array2 datatype...
int64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. 3. 8. 18. 1. 3. 8. 18. 0. 0. 0. 0.]
[ 1. 4. 15. 52. 2. 8. 30. 104. 3. 12. 45. 156.]]