在Python中使用4D系数数组评估笛卡尔积x、y和z上的3D Legendre级数
要在x、y和z的笛卡尔积上评估3D Legendre级数,可以使用Python Numpy中的polynomial.legendre.leggrid3d()方法。该方法返回笛卡尔积x和z中点的三维Chebyshev级数的值。如果c的维度少于三维,则会隐式地将其形状作为1添加到其维度中,使其成为3D。结果的形状将为c.shape[3:] + x.shape + y.shape + z.shape。
第一个参数是x、y和z。在笛卡尔积x、y和z的点上评估三维级数。如果x或y是列表或元组,则首先将其转换为ndarray;否则,保持不变,并且如果它不是ndarray,则将其视为标量。
第二个参数是c。按照多重度数i、j的项的系数包含在c[i,j]中的系数数组。如果c的维度大于两个,则其余的索引枚举多个系数集合。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import legendre as L
创建一个4维数组的系数 –
c = np.arange(48).reshape(2,2,6,2)
显示数组:
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 –
print("\nShape of our Array object...\n",c.shape)
在Python中,要在x,y和z的笛卡尔积上评估3D Legendre系列,请使用polynomial.legendre.leggrid3d()方法。
print("\nResult...\n",L.leggrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np
from numpy.polynomial import legendre as L
# Create a 4d array of coefficients
c = np.arange(48).reshape(2,2,6,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3D Legendre series on the Cartesian product of x, y and z use the polynomial.legendre.leggrid3d() method in Python Numpy
print("\nResult...\n",L.leggrid3d([1,2],[1,2],[1,2],c))
输出
Our Array...
[[[[ 0 1]
[ 2 3]
[ 4 5]
[ 6 7]
[ 8 9]
[10 11]]
[[12 13]
[14 15]
[16 17]
[18 19]
[20 21]
[22 23]]]
[[[24 25]
[26 27]
[28 29]
[30 31]
[32 33]
[34 35]]
[[36 37]
[38 39]
[40 41]
[42 43]
[44 45]
[46 47]]]]
Dimensions of our Array...
4
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 6, 2)
Result...
[[[[ 552. 28911. ]
[ 900. 46566. ]]
[[ 972. 49765.5 ]
[ 1566. 79447.5 ]]]
[[[ 576. 29977.5 ]
[ 936. 48165.75 ]]
[[ 1008. 51365.25 ]
[ 1620. 81847.125]]]]