在Python中计算三维 Hermite_e 级数在x、y和z的笛卡尔积上的值
要计算三维 Hermite_e 级数在x、y和z的笛卡尔积上的值,请使用Python中的 hermite_e.hermegrid3d(x, y, z, c) 方法。该方法返回在x、y和z的笛卡尔积上的点处的二维多项式的值。参数是x、y、z。三维级数在x、y和z的笛卡尔积上的点处进行评估。如果x、y或z是列表或元组,则首先转换为ndarray,否则保持不变,如果它不是ndarray,则被视为标量。
参数c是按照这样的顺序排列的系数数组,即i、j次的系数包含在c[i,j]中。如果c的维度大于两维,则剩余的索引将枚举多组系数。如果c的维度少于三维,则会隐式地将其形状附加为3D。结果的形状将为c.shape[3:] + x.shape + y.shape + z.shape。
步骤
首先,导入所需的库 –
import numpy as np
from numpy.polynomial import hermite_e as H
创建一个二维系数数组 –
c = np.arange(4).reshape(2,2)
展示数组 −
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型-
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 –
print("\nShape of our Array object...\n",c.shape)
要在x、y和z的笛卡尔积上评估一个3-D Hermite_e级数,请使用Python中的hermite_e.hermegrid3d(x, y, z, c)方法。
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np
from numpy.polynomial import hermite_e as H
# Create a 2d array of coefficients
c = np.arange(4).reshape(2,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Hermite_e series on the Cartesian product of x, y and z, use the hermite_e.hermegrid3d(x, y, z, c) method in Python
print("\nResult...\n",H.hermegrid3d([1,2],[1,2],[1,2],c))
输出
Our Array...
[[0 1]
[2 3]]
Dimensions of our Array...
2
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2)
Result...
[[17. 28.]
[28. 46.]]