在Python中使用4D系数数组在点(x,y,z)上评估3D Chebyshev系列
要在点(x,y,z)上评估3D Chebyshev系列,请使用Python的Numpy中的polynomial.chebval3d()方法。该方法返回由x,y和z对应值的三元组形成的点上的多维多项式的值。
参数是x,y,z。在点(x,y,z)处评估三维系列,其中x,y和z必须具有相同的形状。如果x,y或z中的任何一个是列表或元组,则首先转换为ndarray,否则保持不变,如果它不是ndarray,则视为标量。
参数c是一个数组,其顺序排列,使得多重度i,j,k的项的系数包含在c[i,j,k]中。如果c的维度大于3,则其余索引枚举多个系数集。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import chebyshev as C
创建一个4维数组的系数 −
c = np.arange(48).reshape(2,2,6,2)
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 −
print("\nDatatype of our Array object...\n",c.dtype)
获取形状−
print("\nShape of our Array object...\n",c.shape)
要在点(x,y,z)处评估3-D Chebyshev系列,请使用polynomial.chebval3d()方法−
print("\nResult...\n",C.chebval3d([1,2],[1,2],[1,2], c))
示例
import numpy as np
from numpy.polynomial import chebyshev as C
# Create a 4d array of coefficients
c = np.arange(48).reshape(2,2,6,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Chebyshev series at points (x, y, z), use the polynomial.chebval3d() method in Python Numpy
print("\nResult...\n",C.chebval3d([1,2],[1,2],[1,2], c))
输出
Our Array...
[[[[ 0 1]
[ 2 3]
[ 4 5]
[ 6 7]
[ 8 9]
[10 11]]
[[12 13]
[14 15]
[16 17]
[18 19]
[20 21]
[22 23]]]
[[[24 25]
[26 27]
[28 29]
[30 31]
[32 33]
[34 35]]
[[36 37]
[38 39]
[40 41]
[42 43]
[44 45]
[46 47]]]]
Dimensions of our Array...
4
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 6, 2)
Result...
[[ 552. 148176.]
[ 576. 152631.]]