在Python中生成Legendre级数的范德蒙矩阵
要生成Legendre多项式的伪范德蒙矩阵,请使用Python Numpy中的polynomial.legvander()方法。
该方法返回伪范德蒙矩阵。返回矩阵的形状为x.shape + (deg + 1),其中最后一个索引是对应Legendre多项式的阶数。dtype与转换后的x相同。
参数x返回一个点的数组。如果元素中有任何复数,则dtype转换为float64或complex128。如果x是标量,则转换为1-D数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库 –
import numpy as np
from numpy.polynomial import legendre as L
创建一个数组 –
x = np.array([0, 1, -1, 2])
显示数组 –
print("Our Array...\n",c)
检查尺寸-
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型−
print("\nDatatype of our Array object...\n",c.dtype)
获取形状-
print("\nShape of our Array object...\n",c.shape)
要生成Legendre多项式的伪Vandermonde矩阵,请使用Python中的polynomial.legvander()方法。
print("\nResult...\n",L.legvander(x, 2))
实例
import numpy as np
from numpy.polynomial import legendre as L
# Create an array
x = np.array([0, 1, -1, 2])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the polynomial.legvander() method in Python Numpy
print("\nResult...\n",L.legvander(x, 2))
输出
Our Array...
[ 0 1 -1 2]
Dimensions of our Array...
1
Datatype of our Array object...
int64
Shape of our Array object...
(4,)
Result...
[[ 1. 0. -0.5]
[ 1. 1. 1. ]
[ 1. -1. 1. ]
[ 1. 2. 5.5]]