在Python中生成Legendre多项式和点的伪范德蒙矩阵
要生成Legendre多项式的伪范德蒙矩阵,可以使用Python Numpy中的legendre.legvander2d()方法。该方法返回伪范德蒙矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Legendre多项式的次数。dtype将与转换后的x相同。
参数x、y是具有相同形状的点坐标数组。元素的dtype将根据是否存在复数来转换为float64或complex128。标量将转换为1-D数组。参数deg是形式为[x_deg, y_deg]的最大次数列表。
步骤
首先,导入所需库:
import numpy as np
from numpy.polynomial import legendre as L
使用numpy.array()方法创建具有相同形状的点坐标数组 –
x = np.array([1, 2])
y = np.array([3, 4])
展示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型−
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状−
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
使用Python Numpy中的legendre.legvander2d()方法生成勒让德多项式的伪范德蒙德矩阵-
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import legendre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[1 2]
Array2...
[3 4]
Array1 datatype...
int64
Array2 datatype...
int64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. 3. 13. 63. 1. 3. 13. 63. 1. 3.
13. 63. ]
[ 1. 4. 23.5 154. 2. 8. 47. 308. 5.5 22.
129.25 847. ]]