在Python中生成Legendre多项式和x、y浮点数组的伪Vandermonde矩阵
要生成Legendre多项式的伪Vandermonde矩阵,可以使用Python NumPy中的legendre.legvander2d()方法。该方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Legendre多项式的阶数。dtype将与转换后的x相同。
参数x、y是具有相同形状的坐标点数组。dtype将根据元素是否为复数而转换为float64或complex128。标量将转换为1-D数组。参数deg是最大阶数的列表,形式为[x_deg, y_deg]。
步骤
首先,导入所需的库-
import numpy as np
from numpy.polynomial import legendre as L
使用numpy.array()方法创建具有相同形状的点坐标数组 –
x = np.array([0.1, 1.4])
y = np.array([1.7, 2.8])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型−
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的尺寸-
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 –
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
要生成勒让德多项式的伪范德蒙矩阵,可以使用Python Numpy中的legendre.legvander2d()方法−
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import legendre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([0.1, 1.4])
y = np.array([1.7, 2.8])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[0.1 1.4]
Array2...
[1.7 2.8]
Array1 datatype...
float64
Array2 datatype...
float64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1.0000000e+00 1.7000000e+00 3.8350000e+00 9.7325000e+00
1.0000000e-01 1.7000000e-01 3.8350000e-01 9.7325000e-01
-4.8500000e-01 -8.2450000e-01 -1.8599750e+00 -4.7202625e+00]
[ 1.0000000e+00 2.8000000e+00 1.1260000e+01 5.0680000e+01
1.4000000e+00 3.9200000e+00 1.5764000e+01 7.0952000e+01
2.4400000e+00 6.8320000e+00 2.7474400e+01 1.2365920e+02]]