在Python中生成Legendre多项式和x,y复数点的伪Vandermonde矩阵
要生成Legendre多项式的伪Vandermonde矩阵,请使用Python Numpy中的legendre.legvander2d()方法。该方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是对应Legendre多项式的阶数。dtype将与转换后的x相同。
参数x,y是一个具有相同形状的点坐标数组。根据元素是否为复数,将其转换为float64或complex128。标量将转换为1维数组。参数deg是形式为[x_deg,y_deg]的最大阶数列表。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import legendre as L
使用numpy.array()方法创建具有相同形状的点坐标数组-
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
显示数组 –
print("Array1...\n",x)
print("\nArray2...\n",y)
显示数据类型 –
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 –
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状−
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
生成Legendre多项式的伪Vandermonde矩阵,使用Python Numpy中的legendre.legvander2d()方法−
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np
from numpy.polynomial import legendre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
输出
Array1...
[-2.+2.j -1.+2.j]
Array2...
[1.+2.j 2.+2.j]
Array1 datatype...
complex128
Array2 datatype...
complex128
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. +0.j 1. +2.j -5. +6.j -29. -8.j -2. +2.j -6. -2.j
-2. -22.j 74. -42.j -0.5 -12.j 23.5 -13.j 74.5 +57.j -81.5 +352.j]
[ 1. +0.j 2. +2.j -0.5 +12.j -43. +37.j -1. +2.j -6. +2.j
-23.5 -13.j -31. -123.j -5. -6.j 2. -22.j 74.5 -57.j 437. +73.j]]