在Python中生成Chebyshev多项式的范德蒙矩阵
要生成Chebyshev多项式的范德蒙矩阵,在Python的Numpy中使用chebyshev.chebvander()方法。该方法返回范德蒙矩阵。 返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Chebyshev多项式的阶数。 dtype将与转换后的x相同。
参数a是点的数组。dtype根据元素是否为复数进行转换为float64或complex128。如果x是标量,则转换为1-D数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import chebyshev as C
创建一个数组 –
x = np.array([0, 1, -1, 2])
显示数组 –
print("Our Array...\n",x)
检查尺寸 –
print("\nDimensions of our Array...\n",x.ndim)
获取数据类型 −
print("\nDatatype of our Array object...\n",x.dtype)
获取形状 –
print("\nShape of our Array object...\n",x.shape)
使用Python中的chebyshev.chebvander()函数来生成Chebyshev多项式的Vandermonde矩阵 –
print("\nResult...\n",C.chebvander(x, 2))
示例
import numpy as np
from numpy.polynomial import chebyshev as C
# Create an array
x = np.array([0, 1, -1, 2])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a Vandermonde matrix of the Chebyshev polynomial, use the chebyshev.chebvander() in Python Numpy
print("\nResult...\n",C.chebvander(x, 2))
输出
Our Array...
[ 0 1 -1 2]
Dimensions of our Array...
1
Datatype of our Array object...
int64
Shape of our Array object...
(4,)
Result...
[[ 1. 0. -1.]
[ 1. 1. 1.]
[ 1. -1. 1.]
[ 1. 2. 7.]]