在Python中计算以x,y和z的笛卡尔积为输入的3D Hermite级数
要在x,y和z的笛卡尔积上计算3D Hermite级数,可以使用Python中的hermite.hermgrid3d(x, y, z, c)方法。该方法返回笛卡尔积中各点上二维多项式的值。
参数为x,y,z。在笛卡尔积中的点上计算三维级数。如果x,y或z是一个列表或元组,它会先转换为ndarray,否则将不变,如果它不是ndarray,则视为标量处理。
参数c是按照以i,j为次数的项的系数(c[i,j])有序排列的数组。如果c的维度大于两个,剩余的索引将列举多组系数。如果c的维度少于三个,会隐式地添加1使其形成3D的形状。结果的形状将是c.shape[3:] + x.shape + y.shape + z.shape。
步骤
首先,导入所需的库−
import numpy as np
from numpy.polynomial import hermite as H
创建一个4维系数数组 −
c = np.arange(48).reshape(2,2,6,2)
显示数组 –
print("Our Array...\n",c)
检查尺寸 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 −
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 –
print("\nShape of our Array object...\n",c.shape)
要在x、y和z的笛卡尔积上评估3D的Hermite系列,在Python中使用hermite.hermgrid3d(x, y, z, c)方法 –
print("\nResult...\n",H.hermgrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np
from numpy.polynomial import hermite as H
# Create a 4d array of coefficients
c = np.arange(48).reshape(2,2,6,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Hermite series on the Cartesian product of x, y and z, use the hermite.hermgrid3d(x, y, z, c) method in Python
print("\nResult...\n",H.hermgrid3d([1,2],[1,2],[1,2],c))
输出
Our Array...
[[[[ 0 1]
[ 2 3]
[ 4 5]
[ 6 7]
[ 8 9]
[10 11]]
[[12 13]
[14 15]
[16 17]
[18 19]
[20 21]
[22 23]]]
[[[24 25]
[26 27]
[28 29]
[30 31]
[32 33]
[34 35]]
[[36 37]
[38 39]
[40 41]
[42 43]
[44 45]
[46 47]]]]
Dimensions of our Array...
4
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2, 6, 2)
Result...
[[[[ -8100. 32472.]
[-14148. 56976.]]
[[-14796. 59832.]
[-25740. 104480.]]]
[[[ -8343. 33543.]
[-14553. 58761.]]
[[-15201. 61617.]
[-26415. 107455.]]]]